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1. Phys. A: Math. Gen. 21 (1988) 1069-1078. Printed in the UK 

On mass-conserving solutions of the discrete coagulation 
equation 

M Shirvanif and J D R Stock$ 
i Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2G1 
$ Department of Mathematics, Heriot-Watt University, Edinburgh EH14 4AS, UK 

Received 2 September 1987 

Abstract. We present the explicit pre-gelation solution of the discrete coagulation equation 
for the general bilinear kernel and arbitrary initial conditions. For the pure addition kernel, 
we prove that gelation never takes place even if the second moment of the initial particle 
distribution is infinite. 

1. Introduction 

The number distribution of an assembly of rapidly coagulating particles, each of integer 
mass, is governed by the infinite system of equations 

X 

(1) 
dc 

C = - - - ! = l  2 K ,k cc  J h - c, 1 Kt,c, i =  1 ,2 ,3 , .  . . 
' d f  * , t i= ,  / = I  

where c,(t) is the number of particles of mass i at time t, and K,, is the coagulation 
kernel (von Smoluchowski 1916). Equations (1) must be supplemented by a given set 
of non-negative initial values q ( 0 )  representing the initial size distribution. In the case 
where all the particles are initially of unit mass (the monodisperse initial conditions), 
system (1) was solved by Smoluchowski for the constant kernel K ,  = 1 and by McLeod 
(1962) for the product kernel K ,  = ij. In the latter case, McLeod found that no solution 
exists which conserves the total mass for all time. Indeed, very little is known about 
general properties of the solutions of (1) for unbounded kernels (Drake 1972). White 
(1980) has shown that, for the addition kernel K ,  = i + j ,  the nth moment of the 
distribution, S,  = Z t  Yc,, remains finite if it is initially finite, for n 3 2. It follows that 
for this kernel mass is conserved if the second moment is initially finite. 

There has been much interest in the bilinear kernel K,] = A + B( i + j )  + Cij (where 
A, B, C are nonnegative constants), mainly because this appears to be the only form 
which offers any hope of analytical solution, although it does have physical significance 
(Cohen and Benedek 1982). Much work has concentrated on monodisperse initial 
conditions and this case has now essentially been solved (van Dongen and Ernst 1984). 
When C > 0, it is easy to show directly from ( 1 )  that (provided we can interchange 
d/dt  with summations) the total number of particles becomes negative at a finite time, 
t o ,  if it is assumed that the total mass is conserved. Also, if S3 is assumed finite, then 
the second and higher moments tend to infinity at a finite time, t , .  As a result, it was 
long believed that the product kernel was physically unrealistic, but it is now known 
that for monodisperse initial conditions a solution of (1) exists beyond t = t , ,  with 
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1070 M Shirvani and J D R Stock 

the total mass decreasing for t > t ,  (Ziff and Stell 1980). It must be emphasised that 
the equation for S,  derived directly from (1) (Drake 1972) is dependent on the 
assumption that Sn+] exists, and is therefore not a priori valid. Any attempt to derive 
exact solutions of (1) which fails to take account of this point (e.g. Spouge 1983, Lu 
Binglin 1987) is clearly inadequate. It is straightforward to show that SI S 0 (at least 
while ci 2 0 for all i ) ,  and in polymer science a decreasing total mass is interpreted 
physically as indicating the creation of a gel, coexisting with matter still in the sol 
phase (Leyvraz and Tschudi 1982, Ziff et a1 1983, van Dongen and Ernst 1984). The 
gel time, t , ,  is defined as the point at which the total mass ceases to be constant. 
Evidently, if S2 +- 0O as t + t , ,  it is necessarily the case that t ,  c t , .  However, it is not 
obvious that t ,  = t ,  as has sometimes been assumed (van Dongen and Ernst 1983, Ziff 
et a1 1983). The present authors have shown rigorously that the mass SI is conserved 
and that S,(bt)  = S:/So( t )  for t < t, in the monodisperse case when C > 0. The existence 
of the post-gel solution depends upon continuity through the gel point, which we have 
not established. Subject to this, we have tg = t ,  = i to .  

In this paper, we determine the form that a mass-conserving solution of (1) must 
take if it exists, for arbitrary A, B, C and initial conditions (subject only to the existence 
of the initial total mass). For the addition kernel we prove rigorously that gelation 
never occurs (note that this is immediate for the constant kernel). The ‘usual’ moment 
equation for S,(t) remains valid provided S,(O) is finite (even if S,+,(O) is infinite), 
while if S,,(O) is infinite, then S , ( t )  remains infinite for all t. In particular ( n  = l ) ,  this 
demonstrates that gelation is not necessarily associated with an infinite second moment. 

2. The general solution 

Let p (  t )  = c,( t )  and m( t )  =I;, ic,( t )  be the total number of particles and their total 
mass respectively, and set M = m(0).  If there is a mass-conserving solution to (1) then 
we may add (1) for all i and deduce that p satisfies the differential equation 
dp/dt = - f (Ap2+2BpM+ CM’).  We accordingly define P ( t )  by P(0)  = p ( O )  and 
dP /d t  = - i (AP2+ 2BMP+ C M 2 ) .  Now consider the following system of equations: 

XI + [ ( A P  + BM ) + ( BP + CM ) i ] X ,  = i 2 K,kX,Xk (2) 
j + k = i  

subject to the initial conditions X,(O) = ~ ~ ( 0 )  for all i. In theorem 2 we obtain explicit 
solutions to (2), and show in particular that X I  2 0  for all t 20 .  Before doing so, 
however, we establish the connection between (1) and (2). 

Theorem 1. The following are equivalent for any 0 < T s 00. 

( a )  System (1) has a solution { c i (  t ) }  with ci 3 0 and m( t) = M for all t E 10, T ) .  
( b )  X i  = ci and ZFe1 i X i ( t )  is continuous for all t E [0, T ) .  
( c )  Z z 1  i X i ( t )  = M for all t E [0, T ) .  
Moreover if C = 0, then the above are implied by 
( d )  Z E l  i 2 X i ( t )  is continuous for all t E [0, T). 

ProoJ: In what follows we write 7~ = X I  X i  and p = Z, iXi.  Note that, if p is continuous 
in t, then the positivity of the terms iXi (proved in theorem 2 )  and a well known 
theorem of Dini (Bromwich 1926, 0 49.2) imply that p is uniformly convergent. 
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Summing ( 2 )  over all i it follows that 1 X ,  is uniformly convergent. Thus 7i = Z X, ,  
whence 

c2 

7 i + ( A P + ~ ~ ) ~ + ( B p + c ~ ) C L = ~  1 1 KJkXJXk. 
t = l j + k = z  

In terms of ( = T - P and 7 = CL - M this reduces to 

i=j (A .$2+2B(q+ Cq2) .  (3) 

( b )  + ( a ) .  Since X ,  = c, we have p = m and x = p ,  and it follows from (1) and ( 2 )  
that A P +  BM = A p +  Bm and BP+ CM = Bp+Cm. In terms o f t =  x -  P = p -  P and 
7 = m - M these reduce to A(+ Bq = 0 = B(+ Cq. But then (3) implies that 2( = 
((A.$+ B 7 )  + q ( B [ +  C 7 )  = 0, and so 5 is identically zero since [(O) = 0. Thus Bq = 
C q  = 0,  and hence q = 0 identically except possibly when B = C = 0. In this rather 
trivial case (the constant kernel) we may multiply (1) by i and sum to give m = M. 
Thus in all cases m = M and p = P. Therefore ( 2 )  reduces to (1) and we have (a ) .  

( c ) + ( b ) .  Here by assumption q = p -  M = O  for all te [O ,  T ) ,  and so (3) gives 
6 = $At2. In view of ((0) = 0 this implies that (( t )  = 0 for all t E [0, T ) .  We now know 
that M = X  iX, and P = C  X I .  Substituting these into ( 2 ) ,  the system of equations 
reduces to ( l ) ,  so X, = c, since X,(O) = c,(O). 

(a) + (c). If m ( t )  = M for all t E (0, T )  then the same argument as at the beginning 
of this proof, using (1) instead of ( 2 ) ,  implies that 0 = X C,. Summing (1) over all i we 
find that 0 = -$(Ap2+2BpM+ CM') .  Hence p and P satisfy the same differential 
equation, and as P(O)=p(O) we must have P = p  identically. Thus (1) and ( 2 )  are 
identical, so X ,  = c, for all i, and in particular p = m = M. 

If C = 0, ( d )  + (c ) .  Denote Z i 2 X ,  by U. Multiplying ( 2 )  by i and summing and 
using the continuity of U, we find 

C; =A& + B ( p 7  +a()  + CUT. 

If  C = 0, then 5 = 0 by (3). Hence ti = B 7 ( q  + M )  and it follows that 7) = 0, i.e. p = M. 

We proceed to the solution of ( 2 ) .  It is convenient to work in terms of the variable 
U = P / M .  It is  immediate that U satisfies the equation du/dr = -$M(Au2+2Bu + C ) .  
The functional form of U is given in the appendix. Also, in what follows we adopt 
the convention that the subscript zero denotes the value of a variable at time t = 0. 
We then have the following. 

Theorem 2. The system of equation ( 2 )  has the solution 

x, = tw ( 19, ( ) CY ( U ) - I  

for all i, where q ( u )  = Au2+2Bu + C, the function CY satisfies a ( u 0 )  = 1 and d In a / d u  = 
- 2 ( B u + C ) / q ( u ) ,  and the Qt are polynomials of degree at most i- 1 in U .  More 
precisely, Q,(u)=XiZb a,(uo-u)' where ~ , ~ = 2 c , ( O ) / M q ( u , )  and for j *  1 

1 - 1  1 - 1  

s = l  k = O  

Proof: Clearly ( 2 )  has the integrating factor p, given by p l / p l  = 
( A P +  B M ) +  ( B P +  C M ) i  It follows that p, = CY'@, where CY is as above and p satisfies 
@ / p  = M ( A u + B ) ,  p ( u 0 )  = 1 .  Consequently p ( u )  = q ( u , ) / q ( u ) .  Since p, = p - ' P , p k  
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when i = j + k ,  equation ( 2 )  can be written in the form d(p,X,) /dt= 
(2p)-' ZJ+k=, Klk(plXl)(pkXk). Now set Ql(u)  = 2p,X,/Mq(uo). Using the formulae 
for U and p we obtain 

dQ,/du = -$ K,kQJQk. ( 5 )  
] + k = t  

Clearly QJ(uo) = 2c,(0)/Mq(uo) for all i. For i = 1 we have dQ,/du =0, and so Ql(u)  = 
2c,(0)/Mq(uo). Assume inductively that Qs(u)  is a polynomial of degree less than s 
for all s < i. Then the right-hand side of (5) is a polynomial of degree at most 
j - 1 + k - 1 = i - 2 ,  and so Qz has degree at most i - 1. Write Q,( U )  = Z;:: a,( uo - U)], 
so QI1'( uo) = ( - l ) J j !  a,. Differentiating ( 5 )  j - 1 times and setting U = uo we find 

where we have used the form -2-I C:Z', KS,,--SQsQ,-s for the sum in (5) .  The result 
follows. 

Remark. It is easy to see that .(U) is equal to exp[2(uo-u)] when A = B = O ,  to 
e x p ( u o - u ) [ ( u o + C / 2 B ) / ( u + C / 2 B ) ] C ' 2 B  when B>O and A = 0 ,  and to 
[ q ( ~ ~ ) / q ( u ) ] ~ ' ~  exp[(AC - B2)Mt/A] otherwise. In particular, a 2 0 ,  and so X i  2 0 ,  
for all U. This establishes the property of the X, used in the proof of theorem 1. 

3. Moments and initial conditions 

We proceed to derive more convenient forms for the moments S n ( u )  =Z:=;"=, inX,(u) 
(i t  would be pedantic to use a different symbol from S here, since we cannot derive 
results on the moments of the c, before establishing that c, =XI  for all i ) .  Define 
+(z) =Z;"=, U , ~ Z '  = 2(Mq0)-' Z, c,(O)zl, where z is a complex variable. Since +( 1 )  exists 
by assumption, + is analytic in the disc 1 z 1 < 1. Also, if 1 z1 S 1,  then 12:=, a,,z'I s 
2:  a J o ~ z ~ ' ~ ( Z ~  a l o ) ~ z ~ s + ( l ) ~ z ~ .  Letting n + m  we obtain 

I +(z)l  s +(1)1z1. 

We now have the following. 

Theorem 3. For n, s 3 0  define L,,,(u) =ZyZ1 ina i sa (u) - i  for all U S  uo. Then: 
(i)  for all A, B, C we have &(U) = ; M q ( u )  ZF=o Ln,,(u)(u0- U)'; 
(ii) if B and C are not both zero then Ln,J U )  is finite for all U < uo,  and we have 

for all n , s > O  and all u c u o .  

equal, or both infinite, for any given value of U. 
(i)  is to be interpreted as meaning that the two sides are either both finite and 
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ProoJ: (i)  By theorem 2 we can write 
r 3 c x  

S , , ( U ) = + M ~ ( U )  1 i " a , , ( u , - u ) ' a ( u ) - ' .  
, = I  r = O  

Thus (i) is a consequence of Pringsheim's theorem on double series of positive terms 
(Bromwich 1926, 931). 

(ii) Define a sequence of functions 4,  by 

4 d z )  = $(e') 

where differentiation is with respect to z. Since 4 is analytic in the open unit disc, & 
(and hence all the &) are analytic for Re(z) < 0. For U < uo let v = In a ( U). Then 
U > 0 since B and C are not both zero (cf theorem 2 ) ,  and hence all the derivatives 
+:")( - U )  exist. We show that LS( U )  = 4in)( -U) for all n,s 2 0. To begin with, 40( z )  = 
2, a,Oe'z, so ~ Y ' ( - u )  = X, for all n. Assume inductively 
that LnJ(  u j = C$;")(-U) for all n 2 0 and all j < s. 

e-'" = C, inalOa( U)-' = 

Differentiating the defining equation for 4y n times we obtain 

Let z = -U and use the inductive hypothesis to get 

Now by (3)  we have 

and so 

i f la , ,=-  1 C (e+f)"[A+B(e+f)+Cefla,,kaf,s-k-l 
1 s-l 

2s  k = O  e + / = ,  

Now note, for example, that the product Lr,kLn-r,s-k-l in the expression for 4'," ' ( -~) 
is equal to 

Writing down similar expressions for the other products in C$:"' ( -U)  and using the 
above formula for inals to simplify the result it is easy to see that 

Lc 

&?)(-U) = c i"uZsff-'  = L , , ( U )  for all n. 
, = I  

We have therefore established the finiteness of the L,, and the second formula in (ii). 
The first formula in (ii) follows from L , , ( u )  = 4 t " ) ( - u )  and the fact that du/du = 
d(ln a ) / d u  = - 2 ( B u  + C ) / q ( u ) .  
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The constant kernel case ( B  = C = 0) is not covered by theorem 3. It is, however, easy 
to deal with directly. 

Theorem 4. If  A = 1,  B = C = 0, then T = P, CL = M and ci = X ,  for all t 3 0. Further- 
more, if s,, is initially finite, it is given for all t by the formula 

Pro05 We first note that q ( u )  = u2 and a = 1. Assume that &(U,) <CO for n S m, for 
some m 3 1. For n 0, define 

with u n O = X i  i"ai,. Now, for fixed n and s, assume inductively that 

U,,] = i"ag <m for j < s, n s m. 

Then 

= C i " q s  = L,,~. 
I 

Therefore, uns = 15,,,~ < m for s 2 0, n s m. 
Further, define 

( n , s a 0 )  
d" 

dz" 
(bn,(z)=2-s-(@*') 

where Re( z)  s 0. It is easy to verify directly that 4nr satisfies the equation 

Since &"(z) = dn4/dzn ,  we have 4no(0) = uno by Dini's theorem (cf proof of theorem 
1). Setting z = 0 in ( 6 ) ,  induction on s gives immediately that & ( O )  = uns, and hence 

(s a 0, n s m j. 
d" 

dz 
L,, = 2-" 7 (4'+l) j z = o  

By theorem 3(i), 
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Since I 4 ( z )  I s + ( O )  = 2u;l for Re(z) s 0, the geometric series may be summed to give 
the stated result for &(U). Since $(O)  =2uOl and 4'(0)=2u;', we find that So= Mu 
and SI = M, and hence the X ,  are the solution of (1.1) by theorem 1. If there exists 
m such that S,( uo) =CO for n > m, then since the first term in S,  involves LnO (=uno), 
we have S,  =cc ( n  > m )  for all t. 

Remark. When appropriate, we may calculate the form of the higher moments from 
the above formula, e.g. for m > 1, 

S , ( U )  = 2 M ( u - '  - u , ' ) + ~ M u ~ $ " ( O )  = SZ(uo)+ M't. 

We note that S ,  is a polynomial in t of degree n - 1 (cf Drake 1972). 

4. The addition kernel 

We now turn to the addition kernel A = C = 0, B = 1, and first dispose of the case 
where $(z) = Z  aiOz' has radius of convergence R > 1. The result for R = 1 is sub- 
sequently obtained from this case by a limiting argument. To begin with we have the 
following. 

Proposition 1 .  Let A = C = 0, B = 1, and assume that $(z) = Za,,z' has radius of 
convergence greater than 1. Then the moments S , ( t )  of the X I  are finite for all n S O  
and all t 3 0. In particular, 7~ = P, p = M and X, = c, for all t .  

Note that the finiteness of the moments at t = 0 is implied by the condition on +, since 
in general S,(O) can be expressed in terms of $(1), $'(l) ,  . . . , $'"'(1). 

Proof: Let U = uo- U. Now q ( u )  = 214, and hence for U > 0 theorem 3 implies that 
L,,+,,, = dL,,,/du. Hence 

Let w(z)  = z / 4 ( z  - U ) .  Since 4(-v) # 0 and w'(0) = 1 / 4 ( - u )  # 0, w is analytic and 
univalent in a neighbourhood of z = 0. Thus we can write z = wg( w )  where g (  w)  is 
analytic in a neighbourhood of w = 0, say g(  w)  = Z:=o k,(u) ws.  Clearly g satisfies 
g = 4 ( w g  - U), from which it is easy to verify, by implicit differentiation, that g ,  = gg,. 
Substituting the series expansion of g we find that k, = s- '  Z",\ k, dk,-,-,/du. Also 
ko= g ( 0 )  = 4( -u )  = Lo,o, so it follows from (7 )  and the above formula that k, = Lo.$ 
for all s 3 0. In other words z = wg( w )  = w 

Now fix s 3 0 and let fs(5) = ( + ( 5 -  U))'+'. Using w = z/+(z - U )  and Lagrange's 
expansion, we obtain 

Lo,, =fs'"(O)/(s + l)! for all sa0 (8) 
where differentiation is with respect to 5. By assumption $ has radius of convergence 
R > 1 ,  so +([-U) is analytic for all R e L < u + l n R .  Choose r such that u < r <  
min{ 1, u + In R}. Then fs( 5 - U )  is analytic on 1 5 1 S r, and for I 5 1 = r we have Ifs( 5) I = 
I $(exp(l-  u ) ) l s + ' <  $(exp(r-v)) '+ '~eexp[(s+ l ) ( r - u ) ] .  Thecauchyestimateonthe 
- circle 151 = r, together with (8), imply that Lo,, s exp[ ( s+  l ) ( r -  ~ ) ] r - ~ / ( s +  l ) ,  and so 
lims+m LA!: d r-' exp( r - U). Thus g (  w )  = Z Lo,sws has radius of convergence at least 

Lo,sws. 
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r exp( u - r ) ,  which is greater than U since U < r s 1. In particular 7~ = Xs Lo,su* = g(  u )  
is finite. 

To establish the finiteness of the higher moments, consider the relations go = g 
and dg,/dw = ErrO (:)gr+lgn-r for n 3 0. This equation defines g,+] = 
g,'[dg,/dw - Z,=o(r)g,+lgn-r]. Now g is zero-free in its region of analyticity, as follows 
from the equation g(w) = d(  wg( w) - U),  and so all the g, are analytic in the same 
region. It is now easy to see that g,(w)=Z~=o=oL,, ,ws (using theorem 3(ii)), and so 
&(U) =g,(u) is finite for all U (the case U = O  being implied by hypothesis). 

n-1 n 

Finally 7~ = P and p = M follow from theorem 1 in view of the finiteness of S , .  

To deal with the case where + has radius of convergence equal to 1 we need the 
following simple result. 

Lemma. Let f ; ( A ) ,  i = 1,2,. . . , be non-negative, increasing, continuous functions of A 
for A E [0,1], and set F ( A )  = Z:==Lf;(A) (assumed finite for A < 1). Then 

This is interpreted as meaning that one side is finite if and only if the other side is 
finite, and then the two are equal. 

Prooj Let ul = F (  A ) =s CO. The assumptions imply that 
Z ~ = , f ; ( A ) s Z : = , f ; ( l ) = s a , .  Letting n+oo and then A - 1  we obtain w 2 S u 1 .  Similarly 
Z ; = l f ; ( ~ ) s F ( ~ ) ~ u 2 ,  so letting A + l  and then n-*m we get u1Su2.  

f ; (  1 ) s CO, u2 = lim, 

We need to introduce some notation. Let the initial conditions {c,(O)} be such that 
$ ( z )  = (Muo)- '  X, c,(O)z' has radius of convergence 1. For fixed A E (0 , l )  define the 
new initial conditions 

c:(O) = A'c,(O). 

(We denote the quantities defined in terms of the new initial conditions by a superscript, 
e.g. PA = Z, A'c,(O), though for convenience we omit the superscript in the limit A = 1.) 
Now set 

It follows that b(A)A'a,,= PoA 'c l (0 ) /PoP~  = c:(O)/Pt = aFo. A simple induction on j 
using (4) shows that ah,= b(A)'+'A'a,, for ail i , j S O .  Writing u ( A ) =  u t  - u ( A )  and 
noting that a " ( u ( A ) )  =exp(u{ - u ( A ) )  =exp(u(A)j  (cf the appendix) we obtain 

;E 

L & ( u ( A ) )  = i"b(A)"+'A'a,s exp(-iu(A)). ( 9 )  
t = I  

We can now prove the following. 

Proposition 2. Let U E (0, uo) be fixed. Then there exists a function U of A such that 
u ( A ) +  U as A + 1, and S,,(u)=lim,,, S",u(A)) .  
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Proof: We can write b ( A )  = l / J / ( A ) ,  where J / ( z )  = E ,  atoz'. Substituting this into (9) 
and using theorem 3(i) we obtain 

n r ,  

S:(u(A)) = MAu(A)$(h)- '  c i"ais[A exp(-u(A))]'(u(A)$(A)-')". 
r = l  r = O  

Set U = uo- U > 0. Since U; -+ uo as A -+ 1, we have U < U: for all A sufficiently close to 
1. Let u ( A )  = u+ln A < U < U:. Then A exp(-U(/\)) =e-' is independent of A. 
Moreover u ( A ) > O  for all A sufficiently close to 1 ,  and so (10) reduces to 

i = l  x = O  

Using the fact that U; = 4 ( A ) / A $ ' ( A )  it follows that (ut-ln A ) $ ( A ) - '  is an increasing 
function of A, since its derivative 

-$( A ) - 2  $ ' ( A ) (  u +In A )  + J / ( A ) - ' A  -' = J / (  A)-'$'(h)[ ut  - ( U  -t In A ) ]  

is positive. Applying the lemma we find that 

lim S",(u(A)) = MuJ/(l)-l cc inals e-"(u$(l)-')' = &(U) 
1 s  A-I  

since $ ( 1 )  = 1 .  The proof is complete. 

Corollary. If A = C = 0 ,  B = 1, then rr = P, I.L = M ,  and c, = X ,  for all t 3 0. 

Proof: If the radius of convergence of $ is greater than one then this is proposition 
1. Also, when $ has radius of convergence one we know that SA( u ( A ) )  = MAu(A) and 
S:(u(A)) = M A ,  by the same result. Then, for example, p = S , ( u )  = l imA+, S : ( u ( A ) )  = 
limA+l M A  = M, by proposition 2. The proof for 7~ is similar. 

Remark. It is easy to show (cf Drake 1972) that 

S:(u(A)) = S:(u;)(u6/u(A))*. 

Thus by proposition 2 we have 

S,(u)=lim S : ( U ( A ) ) = ( U , / U ) ~ S , ( U , ) .  
A - l  

In other words, &(U) is finite if and only if it is finite at time t = 0. Similar considerations 
apply to the higher moments. 

Appendix 

Let A = B2 - AC. There are five separate cases: 

( i )  C > O , A = B = O  
(i i)  B > O , A = O  
(iii) A=O,A>O 
(iv) A>O,A>O 
( V I  A < 0. 

The formulae for u ( t )  and to ( C  > 0) are as follows. 
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Case u ( t )  10 

(i) U, - iCMt  

(ii) 

( i i i )  

(U,+ C/2B)  expi-BMt) - C / 2 B  

1 + ( Au, + B)Mt/2-A 
U,+ B/A B 

JA A exp(MrJA)+ 1 B Au,+B+JA 
(iv) - --where A = 

A A exp(MtJA)- l  A A U , +  B-JA 

2uo/CM 

(BM)-l  ln ( l+2Bu0/C)  

2 U0 
M(Bu,+  C) 

4 - A  B 2 
-tan(@-$(d -A)Mt)--where 0 =tan- '  

A A (V) 
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